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ABSTRACT

Stress intensity factors are estimated for three-dimensional defects
which occur in ceramic bodies. The two idealized cases considered are:
(4) a spherical void with a circumferential crack at its equator stressed
by uniaxial tension at infinit~•and (

~ a hemispherical pit at a free sur-
face of a semi-infinite body also stressed by uniaxial tension with a cir-
cumferential crack at the semiequator of the pit. These stress intensity
factors, which are given as a function of the crack length L to radius R
of the spherical void or hemispherical pit , are considered as estimates
because of the approximate nature of the analysis..
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INTRODUCTION
Researchers in recent years, such as Evans and Tappin,1 Molner and Rice,2

Baratta et al.,3 and Bansal and Duckworth,~ to name a few , have attempted to uti-
lize linear elastic fracture mechanics to determine fracture energy or mode I frac-
ture toughness (K i~

) of ceramic materials from individual tension or bend specimens
by strength and flaw characterization. This attractive approach, if accurately
accomplished, is worthwhile pursuing because it will provide in situ ~~ data from
a simple specimen configuration. However, it is difficult to accurately assess
stress intensity factors associated with even regularly-shaped single inherent
flaws in ceramic materials because of the complexity of three-dimensional mathe-
inatical analyses. Only a limited number of such solutions are available. Although
there are other reasons why stress intensity factors associated with inherent flaws
in materials are ill defined, such as irregular shape, defects distribution, etc.,
only those single flaws of regular shape which do occur’~ in ceramic materials, seeKirchner et al.5 also, are considered here. Such results, although approximate,
and heretofore unavailable, will aid in fracture mechanics applications and provide
guidance until more rigorous analyses become available.

Therefore, the object of this paper is to estimate stress intensity factors
for (a) a spherical void with a circumferential crack at its equator in an infi-
nite body under uniaxial tensile siress, as shown in Figure 1, and also include

0~

I 1~I I

g p  
:t~r. 

I _ _ _

Th~~’
I. EVANS, A. G., and TAPPIN, G. The Effects of Microwuctuve on the Stress to Propagate Inherent flaws. Proc. Br. Ceram. Soc..

no. 20, 1972, p. 275-297.
2. MOLNER , B. K.. and RICE, R. W. Strength Anisotropy in Lead Zircate Thanate Transducer Rings. Am. Ceram. Soc . Bul., V. 52,

no. 6, 1973 . p. 505-509.
3. BARAUJI F. I., DRISCOLL , G. W., and KATZ , R. N. The Use of Fra cture Mechanics and Fractography to Define Surface f inish

Requirements for 513N4 In Ceramics for High Performance ApplIcations. 3. 1. Burke , A. F. Gorum, and R. N. Katz , eds., Brook Hill ,
Chestnut Hill , Ma ssachu setts , 1974.

4. BANSAL , K. , and DUCKWORTH , W. H. Fracture Stress ns Related to Flaw and Fracture Mirror Sizes. J. Am. Ceram. Soc.. V. 6.
not. 74, 1977 , p. 304-310.

S. KIRCHNER. H. P., GROVER. IL. M., and SOTFER. W . A. Characteristics of Flaws at Fracture Origins and Fracture Stress’Fbw
Size Relations in Vatio~s Ceramics. Mtls. Sd. and Eng., no. 22. 1976. p. 147-156.
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(b) a circumferentially-cracked hemispherical pit at a free surface of a semi-
infinite body also stressed by uniaxial tension, as shown in Figure 2. Stress
intensity estimates for these two cases will be developed .

PROCEDURE

The procedure is one of applying the appropriate stress, compatible with t~ie
defect discontinuity, to the crack tip for the known limiting cases of stress
intensity and utilizing an interpolation scheme between limits to deterr.uine inter-
mediate values. According to Barenblatt,6 the stress intensity can be obtained
by loading the crack faces with the negative of the stresses that would normally
exist on the plane of the crack, if the crack was absent. However, in the analyses
to follow, rather than apply the stress distribution to the crack face, only the
stress caused by the defect discontinuity will be applied to the crack tip as sug-
gested by Cartwright.*

In order to demonstrate the details of the procedure and evaluate the validity
of the approach, it will be applied to a problem already solved by more accurate
means. Consider a crack in a region of high stress concentration, such as a single
radial crack originating from a circular hole in an infinite plate subjected to uni-
axial uniform tension at infinity, as shown in Figure 3a. This problem hd.- been
successfully solved by Bowie7 and will be used to evaluate the following approach .

We initially consider the crack length L to be very small compared to the hole
radius R. Since the hole radius is very large compared to the crack length we can
consider it to be at an edge of a semi-infinite plate, as shown by the equivalent
system in Figure 3b, but with a stress distribution °~~ r that arises because of
the hole. The normalized stress intensity ratio K1/a irL for an edge crack in a

_ _ _ _ _ _  -- ~J _L_-__----~- ~/ ‘ ‘ L./ .1

Figure 2. A hemispherica l surface pit with a circumferential crack at its semiequator.

‘CAR TWRIGHT. 0. 1.. University of Southampton, England. Internal PublicatIon.
6. BA RFNNLATt . G. I. The Mathematical Theory of Equilibrium Cracks in Brittle Fr ctu re. Advances in Applied Mrcbi~n~c~ . ~~- ~ .

Academic Press , 1962.
7. BOWIF , 0. 1. AnalysIs of an Infinite Plate Containing Radial Cracks Originating at the Houndan ’ of an Internal Circul.ir c’.e.

3. Math. Phys .. V. 35. no. II . 1956 , p. 60-71.
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semi-infinite plate stressed in tension at infinity given by Paris and Sih8 is
K1/a/~t = 1.12, where a is the remotely applied uniform tensile stress. At the
opposite extreme when the crack length is very large compared to the hole radius,
i.e., L/R + ~~, the normalized stress intensity ratio Kj/cW~t= 0.707, from Refer-
ence 7. It appears that this ratio is dependent upon some function of L/R which
has limits of 1.12 when L/R = 0 and 0.707 when L/R + w, Thus, intermediate values
of the normalized stress intensity ratio can be approximated by choosing a function
which is well behaved between the above stated limits. The function arbitrarily
chosen for this problem as well as those to follow is of the form:

f(L/R) = c - k(tan~~ L/R)
m. (1)

Thus, for a circular hole with one radial crack the normalized stress inten-
sity ratio is:

K1/a0(r)vGt = f(L/R) = c - k(tan~~ L/R)
m, (2)

where o0(r) is the stress distribution caused by the circular hole, provided by
Timoshenko and Goodier,9 which is

Oe (r) o[l + (l/2)(R/r)2 + (3/2)(R/r)~ ], r ~ R , (3)

1 H f
Oj ( r )
-

~
. 

~~~~~~~~~~~

Figure 3. Circular hole with a
single radial crack.

a. Cracked Circular Hole b. Equivalent Cracked Circular Hole

8. PARIS. P. C., and SIH. G. C. Stress Analysis of Cracks. ASTM-STP 381, 1970, p. 3013.
9. TIMOSHENKO, S., and G000IER, .1. N. Theory of Elasticity. McGraw-Hill Book Company. Inc.. 2nd Ed., 1951.
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where r is the radial distance from the center of the hole. Substitution of Equa-
tion 3 into Equation 2 and transforming the coordinate axis r by R + L, gives:

K1/o&1 = [c - k(tan~~ L/R)m] [1 + (l/2)(L,R ~ 1) + (3/2)(L,R’ 1). (4)

Equation 4 represents the estimated normalized stress intensity ratio
for a radial crack of length L emanating from a circular hole of radius R. The
particular constants which appear in Equation 4 are readily determined by knowing
c = 1.12 when L/R = 0; k and m are found by allowing f(L/R) = 0.707 when L/R ~~,
and f(L/R) = 0.94 when L/R = 3.0 (taken from Reference 7). The latter value was
chosen so that the error span on the function would be minimized throughout the
total range of L/R. Thus, c = 1.12; k was found to be 0.119 and m to be 2.748.

Equation 4 was then utilized to obtain K/avi~t as a function of L/R from 0 to
infinity. It is seen that these results shown in Table 1 are within ±6% when com-
pared to the more accurate data of Reference 8. Although the results of this pro-
cedure are approximate, it is believed that the errors involved when applied to the
problems represented by Figures 1 and 2 will be of similar magnitude as those given
in Table 1. Thus, a similar approach is used to solve these problems of interest.

Peripherally-Cracked Spherical Void

Coodier10 provides the stress distribution for a spherical defect in an infi-
nite medium stressed in tension. Because of the defect three stresses are developed,
which are indicated schematically in Figure 4; they are a radial stress 0r acting
normal to the interface; a stress G~ acting in a tangential direction to a meridian
(the north-south pole axis of the sphere is considered aligned with the axis of the
applied stress); and another tangential stress 0th normal to both ar and a9. In the
following analysis, the maximum tensile stress i~ assumed to cause crack initiation.

0~

Tab’e 1. COMPARISON OF APPROXIMATE TO EXACT
STRESS INTEN SITY RESULTS FOR A CIRCULAR

HOL E WITH A RADIAL CRACK °
~

L/R From Eq. 3 Reference 7 % Di fference
O 3.36 3.39 -1
0 .1 2.73 2.73 0 R
0.2 2.32 2.30 +1
0.3 2.04 2.04 0 — Figure 4. Coordinate

:~ :~ :~ 
s~~em to describe the

0.6 1 .56 1 .64 ..5 stress state around a

?:g 
~~~ 

:~ 
spherical void.

L5 1.~3 L18 -4
2.0 1.03 1.06 —3
3.0 0.94 0.94 0
5.0 0.86 0.81 +6

10.0 0.78 0.75 +4
0.708 0.707 0

10. 000DIER,J. N. Concentration of Stress Around Spherical and C)’Thid~*.1 Inclusion: and Rates. Trana. Ant. Soc. N. E., v . ~% ,
1933. p. 39.44 
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It is indicated in Reference 10 that the maximum tensile stress for a spheri-
cal void occurs when 0 = 0, resulting in a “hoop stress” 00, which girdles the
equator, It is expected that this tensile stress, if becoming large enough, can
initiate an axisyinmetric crack and extend it in the radial direction as envisioned
in Fi gure 1. The stress distribution when 0 = 0 from Reference 10 is given in the
fol.iowing equation:

= 0(2(7 5) [(4 
- Sv)(R/r)3 + 9(R/r)5] + 1 ), (5)

where ‘v is Poisson’s ratio of the material and r is the radial distance from the
center of the spherical void (r ~ R).

To obtain an approximation for the stress intensity factor associated with
Figure 1, we again initially assume that the crack length L is small compared to
the sphere radius R. Also, as before, we further assume that when the crack is
small, the influence of the spherical void on the crack is negligible and thus can
be considered as an edge crack as shown in Figure 3b, but with a stress distribu-
tion a0(r) provided by Equation 5 that arises because of the spherical void. Also ,
we shall assume that Equation 1 is applicable as well as the constants (except k)
previously given as c = 1.12 and m = 2.748; k is determined by realizing that in
the extreme limit when L/R + ~ the defect geometry approaches a disk crack and thus
K1/0,ct+ 2/n, according to Sneddon.11 Therefore , making use of this end limit in
Equation 1, which is substituted along with Equation S into Equation 2, results in
the following normalized stress intensity expression:

= [c - k(tan-1 L/R) m] (2(7 - 5v) [(4 - 5~~(L,R
l
+ l)~

1 \51 (6)

+ 
~~L/R + 1) J + 1

where c = 1.12, m = 2.748, and k is determined to be 0.101.

The resulting calculations using Equation 6, which represents the normalized
stress intensity ratio for a spherical void cracked at its equator and stressed
by uniform uniaxial tension at infinity, are shown in Table 2 as a function if
L/R from 0 to infinity and for v = 0.25 and 0.30.

Tab’e 2. STRESS INTENSITY RATIO FOR APeripherally—Cracked Hemispherical Pit PERIPHERALLY-CRACKED SPHERICAL VOID
The final case considered is a hemispherical

pit at a free surface of a semi-infinite body L/R~ 0.25 0.30
with a crack initiated at the semiequator of the 0 2.26 2.30
pit and extended radially by a uniaxial uniform
tensile stress as shown in Figure 2. As outlined 0.55 L26 1:26
previously, we initially assume that L is very 1.00 1.~0 108

small compared to R. We further assume that when
the crack is small , the influence of the hemispher- 5.00 0:79 0.79
ical pit on the crack is negligible and thus can 10.00 0.72 0.72
be considered as an edge crack as shown in ______ 

0.64 0.64

II. SNEDDON. I. N. Th~ Distribution of Stress In the Nelghbo4,ood of a Crack in an Elastic Solid. Proc. Roy. Soc. London. v . A-187,
1946.
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Fi gure 3b, with the stress distribution a9(r) that arises because of the surface
pit discontinuity. Again , as before, we utilize Equation 2, with c = 1.12 and
m = 2.748; but determine k from the end limit when L/R + ~~~. Smith and Alavi12 give
the variation of K1/a/t around the semicircular crack boundary and indicate that
the maximum value occurs at the junction of the crack with the free surface and is
1.21 x 2/r . This results in k 0.140.

The stress distribution a0(r) is provided by Eubanks,
13 who has determined the

variation of the circumferential stress along the axis of symmetry as a function of
r at the base of the pit. Equation 2, including the constants previously given,
i.e., c = 1.12, m = 2.748, and k = 0.140, and the normalized stress distribution13
a8(r)/a given in tabular form will provide the normalized stress intensity ratio
for a peripherally-cracked hemispherical surface pit with v = 0.25. Such results,
including a0(r)/a, are given in Table 3 as a function of L/R from 0 to infinity.

RESULTS AND DISCUSSION

The results of the procedure applied to the known stress intensity case of
one radial crack emanating from a circular hole indicated that the error was ±6%.
The procedure was then extended to the two cases of interest assuming that engi-
neering accuracy would be preserved.

Table 2 presents the normalized stress intensity ratio K1/aV~t as a function
of L/R from 0 to infinity for the circumferentially-cracked spherical void , with
Poisson’s ratio being 0.25 and 0.30. This table indicates that Poisson’s ratio,
within the range considered, has little effect on the stress intensity ratio.

Table 3 presents K1/o/ t as a function of L/R from 0 to infinity for the
circumferentially-cracked hemispherical surface pit when v = 0.25. It is evident
that the magnitude of the normalized stress intensity ratio for the peripherally-
cracked surface pit is greater than that of the peripherally-cracked spherical
void for the same given L/R value.

Restrictions on Application

Table 3. NORMALIZED STRESS INTENSITY RATIO .

FOR A PERIPHERALLY-CRACKED HEMISPHERICAL The application of Equation 6 and Tables 2
SURFACE PIT , WITH • 0.25 and 3 has certain restrictions resulting from
L/R c,8 (r) /a K ; /ovGU the implied assumptions given in References 10
0 2.23 2.50 and 13 when determining the appropriate stress
0.15 1.63 1.82 distributions . These restrictions are:
0.35 1.29 1.44

a. the material is isotropic and
2.00 1.00 0.99 homogeneous;
3.00 1 .00 0.93
5.00 1.00 0.88 b. the defect is very large compared to
10.00 1 .00 the grain size of the crystalline

aggregate;

12. SMITH. F. W .. and ALAV I. N. J. Stress intensit y Facto~s for e Pert.Through Circular Sorfece Raw. Proc. Ut In tl . Conf . on
Pressure Veaael Tech.. Delvt , Holland. 1969.

13. EUBANKS. R. A. Stress Concentration Air to a Hemispherical Pit at a Free Surface. 3. AppI. Mech.. v . 21 , 1954, p. 57.62.
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c. there are n - other defects closer than four diameters away;
d. the cracked spherical void can be no closer than four diameters

to the body boundary; and
e. the cracked hemispherical pit on the free surface can be no closer

than lout diameters away from any other body boundary.

SUMMARY

1. An approximate method is presented which allows estimates of normalized
stress intensity for three-dimensional defects such as a circumferentially-cracked
spherical void and a circumferentially-cracked hemispherical surface pit as a func-
tion of crack length to void or pit radius when L/R is between 0 and inf inity.

2. The three-dimensional defects considered in this paper can be thought of
as being two-dimensional at their limits when L/R = 0 and when L/R -

~ infinity.
Wit h the appropriately known limiting normalized stress intensity values obtained
from the literature, an interpolation scheme was employed to obtain intermediate
values when L/R was between 0 and infinity. The results given by Equation 6 and
Tables 2 and 3 are expected to be within engineering accuracy.

3. It was shown that for the spherical void case the variation of Poisson ’s
ratio between 0.25 and 0.30 had little effect on stress intensity.

4. It was also shown that the stress intensity factor associated with a
circumferentially-cracked hemispherical surface pit was greater than that of a
circumferentially-cracked spherical void for the same given L/R value.

5. The restrictions indicated in the previous section must be recognized
when applying Equation 6 or utilizing Tables 2 and 3.
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